September 22, 2021

Open Source Syringe Bot

The Makerspaces at William & Mary have many projects underway, one of the more interesting is the creation of an open source syringe bot design that is ultra-low cost and high resolution. The concept is that there are so many instances when we need a simple robot to move around a syringe and squirt some goop for us; either to 3D print from viscous fluids and epoxies or to perform automatic titration and chemistry a robot can be useful. If we can make one that is ultra-low cost, as in a couple hundred bucks at most, and yet can maintain micrometer level positioning accuracies and micro (or even nano) liter level dispensation volumes, that robot could be truly useful!

Introducing syringeBot v0.1.

This is the basic head for the open source, 3D printable, syringe bot that we’ve completed, tested, and deployed. Here you can see it in action as used by Doctoral Candidate Stapel as it is being used to 3D print diatom-filled biogel structures:

Stapel & Advisor Dr. Hannes Schniepp continue to move forward with their cutting edge research into the 3D printing of biological structures, having now built this new expanded bioreactor to generate custom materials.

We will keep pushing forward with working on and improving ultra-low cost, high resolution, syringe bot design.


This version (0.1v) was designed and produced from scratch by Aidan Connor (Computer Science, ’21) and the Director of the Makerspaces. If you would like to become part of the open source design effort please contact the director at jfrey@wm.edu.

Happy April Fools!

We hope you all had a happy and safe all fools day today! A big thank you to the gifter of printer plants 🙂

3D printed drone parts

Dr. Donglai Gong of William & Mary’s School of Marine Science at the Virginia Institute of Marine Science stopped in yesterday to quickly prototype a nylon based, carbon fiber infused mounting component for an upcoming experiment using advanced drone based instruments. An hour or so after he arrived, he had designed and printed an ultra-strong, lightweight custom fit bracket embedded with continuous carbon fiber and was able to leave equipped to continue pushing the edges of marine science.

EPAD Capstones Head to the Finish Line

In case you’re not familiar, EPAD stands for Engineering, Physics & Applied Design and is a relatively new track developed as a venture between Physics & Applied Science. At the conclusion of a Physics-EPAD degree program the students have to undertake a year long engineering capstone project as a team that comes in a variety of flavors. As we head into the end of the AY20-21 year you can see some students working hard on their capstones.

Let’s make a Uke!

Have you ever made a ukelele using a CNC router? Want to learn? Take a look as one of our own goes through the process and makes his own! Here’s a video of the top being carved out on the router:

Pumps Galore

There comes a time during every semester of APSC251, Introduction to Engineering Design, wherein the students are expected to design, print and assemble working, fully 3D printed, water pumps. Some recent examples provided for them include a piston-style water pump and a centrifugal-style water pump as seen below. Checkout their operation and more videos on our YouTube channel here.